Statistical analysis of minimum cost path based structural brain connectivity

نویسندگان

  • Renske de Boer
  • Michiel Schaap
  • Fedde van der Lijn
  • Henri A. Vrooman
  • Marius de Groot
  • Aad van der Lugt
  • M. Arfan Ikram
  • Meike W. Vernooij
  • Monique M. B. Breteler
  • Wiro J. Niessen
چکیده

Diffusion MRI can be used to study the structural connectivity within the brain. Brain connectivity is often represented by a binary network whose topology can be studied using graph theory. We present a framework for the construction of weighted structural brain networks, containing information about connectivity, which can be effectively analyzed using statistical methods. Network nodes are defined by segmentation of subcortical structures and by cortical parcellation. Connectivity is established using a minimum cost path (mcp) method with an anisotropic local cost function based directly on diffusion weighted images. We refer to this framework as Statistical Analysis of Minimum cost path based Structural Connectivity (SAMSCo) and the weighted structural connectivity networks as mcp-networks. In a proof of principle study we investigated the information contained in mcp-networks by predicting subject age based on the mcp-networks of a group of 974 middle-aged and elderly subjects. Using SAMSCo, age was predicted with an average error of 3.7 years. This was significantly better than predictions based on fractional anisotropy or mean diffusivity averaged over the whole white matter or over the corpus callosum, which showed average prediction errors of at least 4.8 years. Additionally, we classified subjects, based on the mcp-networks, into groups with low and high white matter lesion load, while correcting for age, sex and white matter atrophy. The SAMSCo classification outperformed the classification based on the diffusion measures with a classification accuracy of 76.0% versus 63.2%. We also performed a classification in groups with mild and severe atrophy, correcting for age, sex and white matter lesion load. In this case, mcp-networks and diffusion measures yielded similar classification accuracies of 68.3% and 67.8% respectively. The SAMSCo prediction and classification experiments indicate that the mcp-networks contain information regarding age, white matter lesion load and white matter atrophy, and that in case of age and white matter lesion load the mcp-network based models outperformed the predictions based on diffusion measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity: Applications in Typical Ageing and Schizophrenia

Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-moda...

متن کامل

Statistical Analysis of Structural Brain Connectivity

We present a framework for statistical analysis in large cohorts of structural brain connectivity, derived from diffusion weighted MRI. A brain network is defined between subcortical gray matter structures and a cortical parcellation obtained with FreeSurfer. Connectivity is established through minimum cost paths with an anisotropic local cost function and is quantified per connection. The conn...

متن کامل

Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2011